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FINAL REPORT

This is a final report of the work completed under

AFOSR 77-3286. In Section I , the proposed research is

reviewed and in Section II the work completed under the

grant is discussed . Finally , in Section III work in

progress under the support of AFOSR 77-3286B is discussed .
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I. Research Proposal.

Problems in Optimal Nonlinear Filter ing

In this part of the research w~ seek a coi~putationally

convenient technique for solving the filt. -i ing md prediction

problems for a class of nonlinear stochastic differential

equations subject to par tial observations ~i t  di~ crcte time

poa.nts. The appl~cati.ons of the techni~ue described below to

trajectory estii~tation are apparent.

Let there be given q funct ions f 11 t
2
1... t

q 
which are

known to us. Suppose for some ic~~l,2,... q}, unknown to us,

the state of the process is evolving accordinq to the vector

stochastic differential equations

f
~~
(t,x)dt + g(t,x)dw , x(o) = x .

At the discrete times t1,...  t~~ which are known in advance,

an intermediate observer (usually a machine) receives noise

corrupted observations of the stochastic process x (t). These

observations y(t) satisfy the stochastic differential equations

dy H(t,x ,y)dt + i~ (t,x,y)dw , y(o) 0.

Suppose that y ( t )  E km for some m. Assume there exists known

pairwise disjoint sets B a, , I l , .. ., n , L B ~ R~~. Then at each

time t~ , j  = 1, 2 ,... p, we receive from the intermediate observer

only the information as to which of the events ~ (t~) € has

occurred .

Our f i rs t  problem is to determine for each funct ion

V 
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the probability that the func t ion  is being used given

available information.

Our second prediction problem is the following : Given our

information at times t — t11t 2,...,t~ , and t -he func tion f~~1

determine the best prediction in mean square o~ som e func tion

h(x(T)) of the process, T ‘ t~ .

Let us discuss problem 2 which we have recently solved

theoretically . For each possible information set , we mus t

solve a coupled set of second order partial dilherential

equations. Since the boundary conditions a r e  of Cauchy type ,

they can be solved numerical ly. There are 
~~

p inforuation

sets , each requiring the solving of the cc’up l ed set ol. part.ial

differential equations. Although these problems appear complex ,

they have the impor tant practical advantag e that they can be

completely precomputed and do not need to be solved in real-time.

In this research we intend to consider the problems discussed

above looking at both the theoretical solution and effective ¶
computational methods that can be developed from the theoretical

solutions.

APPROXIMATION TECHNIQUES IN STOCHASTIC CONTROL PROBLEMS

In this research we continue our investigation of approxi—

mation techniques for a wide class of discrete and continuous

time stochastic control problems. This research centers on small

noise problems in the continuous case and on nonclassical

stationary problems in the discrete case. Emphasis is placed

on the developnent and theoretical justification of techniques V V

—. 
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which yield cauputationally t ractable al~ orithm s that answer the

following:

(1) approximations to the optimal cos t and the cost t. 1

using a particular control .

(2 )  approximations to the optit .~ ~ con t t o I

(3)  evaluation of the relative pci i o r u a n c . ’ ot two controls .

(4) estimates for the deterioration in system p er t  orI~1ance

V due to the failure to observe certain ~;vstom components.

SMALL NOISE PROBLEMS IN CONT iNU OUS TIME

Outline:

One general problem has been to ~;e’ i vt  “ app i ~ imately ’ t h e

stochas t ic control problem in term s of q U a Z I ~ I t ie~; computab l e  I rom

the solution to the corresponding deterministic eon t~~o1 problem

when the noise entering the sySt .eLl  ~~ u~~t ioU is a “ sz . a l l ”  P~tr~~~eter .

The g eneral procedure is to t l ieorct  i cu l l y  e~;t abl ish exp.t ~.:; io ns of

the optimal cost and control in  powers of the noise c o effic i e n t .

The expansions then suggest appropriate f o r m s  t oi suboptimul

controls and numerical t echn iques  for determining them . The

theoretical development of the expansions involves the interplay

between probability and pa r t i a l  d i t t e r en t i a l  equations. Set’ (4)

for  a general review of th~ ‘urrent state in this area .

The theoretical portion of this approach lot the completely

observable problem was treated successful ly by Fleminq 13) ; the

num erical algorithms suggested by the theorem s were developed

and employed on some two dimensional examples by this author in

(5J . A partial solution to the open loop control problem was

H
:.~ ~~~
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developed by the author in (6)  and (8) . In this research we

intend to extend the results of the open loop control problem

and derive similar results for the sampled data problem.

Finally , we intend to inves t igat e  the tat.ionary small noise

control problem in the case of both c~~~p l et  c ~t i~d ~~u t ia l  ohs~ -

vations. Under certain assumptions we haVe 0( 111 : 1 .t ” LI  an er :pansion

of the cost of using a f ixed ce’~trol in ( 1 1  . Th e ‘: at t~~~ s in

this case are nice in tha t the coef f ic .i c n t . s of the expdnsion

satisf y algebraic equations and hence can L computed e..t..il y .

In this research we seek expansions of the op t ima l  cost and

control under suitable assumptions . Further  we intend Le in\ sti—

gate approx imation techniques suggeste I )~~ c i .. ’ i rt oJy estaolis}ied

result.

Details:

Many problems of continuous tim e stoch.~~t ic  control c~~n ~e

tormulated as follow . Let x ( t )  = (x 1(t )  , x~~( t )  ~~~~~~~~~~~ t

denote the gtate  of the sy stt ’w at  tim e t. ,  and suppose tha t t h e

states evolve according to the stochastic d i t f e ~ ent ia l  equations

dx ( t )  — f ( t , x ( t ) , u ( t ) ) d t  + b ( t , x ( t ) ) d w ( t ) , t t0, (1)

with initial condition x ( t 0 ) = x 0 ~ B, where x 0 i~
; a cons tant

and B is defined below, in (1) w ig a normalized n dimensional

brownian motion process and u(t) , which takes values in a compact

set K ‘-. Rk, is the control applied at time t. As is customary

dependence on (1) and other equations on the point m in the

sample space ~ is omitted.

.~~. ... ~~~
. 
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Finite time control problems. Let r denote the first time

t > t0 such that (t,x(t) ) .E Q where Q = (t01T) 
x B and B

is an open subset of R~ such that its boundary ~B is a

sz iooth manifold with compact closure. Then the optimal control

problem is to choose u € ~~~, the class of admissible controls ,

so as to minimize the quantity

E J L (t , x ( t ) , u ( t ) ) d t  ( 2 )
t

o

where E denotes expected value.

The class ‘* is chosen to reflect  the amount of information

available to the controller . In this part of the research we

consider three special cases:

Open loop case. No observations of x ( t )  are made for

t > t0 ; hence ‘~~ is selected to be the set of Borel

measurable functions on {t 0 ,T ] .

Complete observations. Here the controller observes the

process at each time t and therefore ‘~~ is chosen to be

{u t u ( t) = Y(t,x(t)) where Y is a measurable function on

(t0,TJ x R~ }.

Saxnpled—data case. Suppose that the process is observed

at times t0
, t1,...,t~ , t0 < t1 

< ... t~ = T. Let

bk = (x(to),...x(tk
)) and let be a measurable function

on (t0,TJ x R~~ . Then ‘~~~ is chosen to be

(ulu( t) = Yk(tcbk)) for some defined above, if

tk_ ], < t < t
Jç,l~ k = 0,1,... p—l}.

-V
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Define ,C (t0,x0
), ~p

C (t0,x0), x
c (t o,xo), and q°(t01x0)

to be the optimal cost for the point (t0
,x 0) in the completely

observable, open loop, sampled-data, and deterministic control

probl~ ns, respectively , with the superscript F indicating that

b(t x) = (2~)1’~~ is used in (1). Assume that (t01x0
) E N

where N is a region of strong regularity . A region of strong

regularity, see [3], p. 480, guarantees that th optimal de-

terministic control and trajectory have certain regularity

properties. Then Fleming showed in (3] that

q~
t ( t ,x ) = 4°(t01x 0

) + EOi + o(c) (3)

and this author showed in (6] in case B = that 
V

= 4~°(t0,x0
) + £02 + o(e) (4)

where and 02 can be determined from a knowledge of the

solution of the corresponding deterministic control problem .

In this research the author seeks to extend the result (4) when 
V

B merely satisfies the earlier hypothesis and also to establish

the analagous result

x
c (t o,x o) = q °(t0,x0) + £0

3 
÷ o(c) (5)

in the sampled-data problem. 
V

Let Y°(t,x) denote the optimal feedback control in the

completely observable case, then Fleming [3] showed that

Y~ (t,x) = YE (t,x) + cW ( t,x) + o(c) (6) 

--
~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ :
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uniformly in ( t , x )  on compac t subsets (‘~~ t I lUSL ey ions in N

where is a C~ func t ion . ~~o seek si~lija1 c: ~tflSioj.. ~~1

the optimal control in the open loop and sal }U d L~a ta  ca~;L:: .

Under assumptions which included that  t~~ch ‘p r lo p control

generate a Gaussian process , we es’ahl.ished ~~ ~u i  c ’

expansions of the optimal control in owers oil

The numerical methods f ~r 1-ui it  m u  t he ~ u I t .t e~

and W ( t , x )  in ~3) and ( 6 )  has l.~ecn di~ :s~ ed t .~ . nape~ 1 5 )

by the author ; the au thor has a l s o  developed under cotta I

as3umflptions a numerical method b r  t ind incj “h  ~ t ” a n t i o~~s ~~i

the form U
0 

+ : icr scxnt’ funct i. u .: i~ t ~~e open L J j V  ea~.

In case an expan~;ion of the open loop c°rt t e l . is es ibi ~uhcd ,

then the func t ion  ~ t.:ust be the coot I i i  n~ t L

Stationary control  prublei.~s. Let k deu~ the 01.155 C~

nomous f eedback .‘ontrols for  which the autoi~omous versi°:-. ( 1 )

has a unique er~ odic ~%easure. See Kushner ~1lI , Wonham [l.4J

and Zakai 116) b r  a discussion e~ this as~ u u pt io n .  The ergo : ..c

measure depends on both u t ~~ and will he denoted l y

~ (u1~~~~) .  The opt imizat ion prob l&~ is to choose u ~. so th a t

J ( U , t )  = J L ( x , u ( x ) ) d t i ( u ,~~, x )  ( 7 )
Rn

is minimized . Denote the minimum cos t by J* (~~) and the optimal

control by u t . Under certain assumptions we have shown 17) that

f or each u ,

k kJ ( u , c)  = c &~ + e ( t ~~) ( 8)
k 0

- -----
~~--.----.- ~~~~ .J T j ~~~~~ -~~—---—-— ~~~~~~~~~~~~~~~ 
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for some constants 01, 0 2 , . . . , t which satisfy algebraic

equations. The integer n depends upon the S I f l O L)t l t f l e S S  ol  1. ,L ,

and u.

In this research we seek expans ions  e~ J * ( ,  ) and u’ in

powers of ~. .  We w il l  also examine the utility ot  imple!i.~enhinq

a truncated expansion of (8) as an approx ittatieil to the cost in

order to determine subopti.mul controls .  Our present research

seems to indicate that this is a good technique when the class

of controls is restricted to those h av in i  prescribed tOn.Ls

with unk nown parameters.

The stationary control prob1ei~t has  b u previous’y ~..tudied

by Wonham and Cashnian ( 1 5 ]  who used st at is~~icai 1ineari~~a L i ~ V n

as an approximation tool .

STATIONARY DISCRETE TIME CONTROL
V 

Discrete t ime stochastic control prob lerts have been t h . - ,  ou¼lIi ly

considered, however , most prior work considers the Case i n  wh ich

the controller remembers all previously obtained information .

This has been called the classical information p a t t e r n  by

Witsenhausen (13). We intend to investigate the stationary

control case where the controller has only partial observations

of the system state and no memory . Th is eriphasis is motivated by

systems in which is too difficult or expensive t o  observe all

system components, and systems in which it is difficult to

implement controls using past information.

Under certain reasonable assuml.tions we have succeeded in

r educi ng the optimization problem to a problem in nonlinear

-V V- - V.
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programming 19 ) .  We have also constructed examples to show tha t

one can do better by using rand~~t ized controls tha n by only using

nunrandemized controls of the cu r ren t  ob~ crved data . In problems

of this type w i t h  co~’t p 1ete observations it is kno~ x i t h at  t h e

op t imiza t ion  problem can be tr eated as a prublt . t  in l i n e a r  pro-

granutling (12) and that  the controller c a n n o t  do ~ .‘t ter  by

considering randomized controls El ] .

In this research the au tho r  i n t ends  to in v e : ;t I - ; it e  the

computational cemplex i ty of the nonli near  i rog ~ ..uum iny a1~jo r i thnt

and to seek conditions on the p ar t i a l ly  observ ..iblc prob letli wh.ich

guarantee that  the optimal control can be chosen to be non—

randomized . This la t ter  ques t ion  is i mp o r tan t .  IRe 1 tor desi~uiing

computational algorithm s and sy st o~I des i . in .

The importance of such pi oblerts was first h i o u - ;h t  to our

at tent ion by Dr .  Raymond R i shel .
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I I .  Work Completed Under the Grant .

(1) Stochaatically per turbed limi t cycles , J. Applied Probability
15 , 31 1—320 ( 1978)

An important question in the st a b i l i t y  and control of

stochastic systems is the determination of the l imi t ing  long

time behavior of the system using a fixed control . This work

answered that question in the case of a stochastic system perturbed

by a small additive noise tern’ where the control is such that the

corresponding deterministic system possesses a stable l imit  cycle.

It is shown that in the limit of larg e tim e the s tochast ic

system is near the limit cycle. This is a stability result.

Moreover , one can compute approximately at which portions of the

limit cycle one is most l ikely to be found . Fur ther  various

• stationary average can be computed .

These results will be of use in designing approximate controls

for stationary stochastic control systems. For a detailed din—

cussion of these results , see the completed above paper .

(2) A Minimum Principle for the Principal Eiyenvalue for Second—
Order Linear Elliptic Equations With Natural Boundary Conditions,
Communications in Pure and Applied Mathematics 31(1978) 509- 519.

This work gives a new characterizat ion of the principal cigen-

value for second—order linear elliptic partial differential

equa tions , not necessarily solf-adjoint , with both natural and

Dirichiet boundary conditions, and also gives a new alternative

numerical method for calculating botn the principal eigenvalue and

corresponding eigenvector in the case of natural boundary conditions.

The principal cigenvalue , if appropriate sign changes are made ,

_ _ _  

_ _  
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determines the stability of equilibrium solutioi.~; to certain

second order nonlinear partial. differential eguations. The

corresponding eigenvector enables one to d ’terniine the first

approximation of the solution of the non lint~ ~~uItiOn to

variations of the initial condition from the iui libr ium

solution. These nonlinear equations are ir~pOrtant in the appli-

cations. For these reasons it is important to have these

characterizations of the principal eigenvaluc anu •iyen/ector.

Our method converts the determination oi. the cigenvai re

and eigenvector to determining the solution of a stationary

stochastic control problem. This latter j  i blem is solved and

from it a numerical scheme arises natural ly .  Th IS method appears

to have applications in solving other proLlenis.

V .
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III. Work in Progress.

In the recent work in (2) above, we were able to derive a

new characterization of the principal eigenvalue for second order

linear elliptic partial differential equations, not necessarily

seif-adjoint, with both natural and Dirichiet boun-lary conditions,

and also give a new alternative numerical method for calculating

both the principal eigenvalue and corresponding eigenvector in

the case of natural boundary conditions.

We shall use the above results to determine the asymptotic

behavior of the principal eigenvalue for som e singularly per turbed

eigenvalue problems as a sinai]. nuisance parameter tends to zero.

The principal eigenvalue is the optimal value for a singularly

perturbed stationary stochastic control problem. We are thus

• able to determine the asymptotic behavior of the optimal value

of certain stationary stochastic control problems.

__________r -
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